Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Stefan G. Minasian,* Jeffrey D. Rinehart, Patrick Bazinet and Michael Seitz

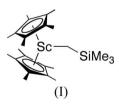
Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA

Correspondence e-mail: sminasian@berkeley.edu

Key indicators

Single-crystal X-ray study T = 104 K Mean σ (C–C) = 0.003 Å R factor = 0.037 wR factor = 0.103 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Bis(pentamethylcyclopentadienyl)[(trimethyl-silyl)methyl]scandium(III)

The geometric features of the title compound, $[Sc(C_5Me_5)_2-(C_4H_{11}Si)]$, are similar to those found in related monomeric organometallic scandium compounds. It is of interest with respect to related systems which have achieved catalytic metathesis of olefins with methane.

Received 18 May 2006 Accepted 9 July 2006

Comment

Selective functionalization of saturated hydrocarbons to more valuable products has attracted considerable attention in organometallic research. Alkyl-, aryl-, and hydridometallocenes of d^0 metals have shown potential utility in this regard, as their ability to activate aromatic and aliphatic C-H bonds has been demonstrated in several instances, with Thompson et al. (1987) the first to show that permethylscandocene alkyls are capable of σ -bond metathesis of hydrocarbon C-H bonds. Recently, Sadow & Tilley (2003) have achieved catalytic metathesis using the scandium neopentyl species $[Cp*_2ScCH_2C(CH_3)_3]$ (Cp* is pentamethylcyclopentadienyl), (II), for the hydromethylation of olefins with methane. The known title compound [Cp*2ScCH2Si(CH3)3], (I), has been synthesized by the method of Thompson et al. (1987) and has been used by Piers et al. (1993) for the insertion reaction of chalcogenides into Sc-C bonds. The single-crystal X-ray diffraction analysis of (I) shows geometric features comparable to those found in (II) (Sadow & Tilley, 2003), with the Sc1-C21-Si1 angle of 129.83 (9)° similar to the Sc1-C21-C22 angle of 128.3 (3)° in (II); while the Sc1-C21 bond lengths of 2.286 (4) and 2.278 (2) Å for (II) and (I), respectively, are essentially equivalent. The Cp* rings of (I) are essentially planar, with the methyl groups bent slightly away $[0.7-11.7^{\circ}, \text{ average } 6.2^{\circ})$ from the metal center of the complex.

Experimental

A solution of (trimethylsilyl)methyllithium (234 mg, 2.49 mmol) in toluene (7 ml) was added to a solution of bis(pentamethylcyclopentadienyl)scandium(III) chloride (1.00 g, 2.85 mmol) in toluene (12 ml). The resulting mixture was stirred at room temperature for 4 h. The solvent was removed *in vacuo*, the title compound was extracted with *n*-pentane (15 ml), and the solution filtered through Celite. Colorless crystals (489 mg, 49%) were grown from a saturated solution of *n*-pentane cooled to 238 K.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

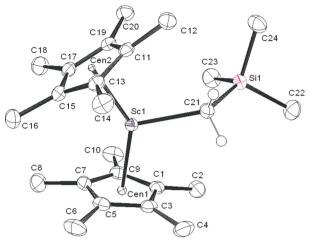
Crystal data

 $[Sc(C_{10}H_{15})_2(C_4H_{11}Si)]$ $M_r = 402.62$ Monoclinic, $P2_1/c$ a = 14.7186 (15) Å b = 11.1667 (11) Å c = 15.2229 (15) Å $\beta = 106.4930$ (10)° V = 2399.1 (4) Å³

Data collection

Siemens SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.92, T_{max} = 1.00$ (expected range = 0.862–0.937)

Refinement


Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.103$ S = 1.084353 reflections 248 parameters H-atom parameters constrained Z = 4 D_x = 1.115 Mg m⁻³ Mo K α radiation μ = 0.36 mm⁻¹ T = 104 (2) K Block, colorless 0.33 × 0.19 × 0.18 mm

10986 measured reflections 4353 independent reflections 3619 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$ $\theta_{\text{max}} = 25.4^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0597P)^2 \\ &+ 0.888P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.018 \\ \Delta\rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

H atoms were positioned geometrically, with C–H = 0.97 Å for CH₂ groups or 0.96 Å for CH₃ groups, and constrained to ride on their parent atoms. $U_{iso}(H)$ values were set at 1.2 times $U_{eq}(C)$ for CH₂ groups and 1.5 times $U_{eq}(C)$ for CH₃ groups.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Figure 1

Displacement ellipsoid plot of (I) (50% probability level, methyl H atoms omitted for clarity) with the atom-numbering scheme.

The authors thank Dr Frederick Hollander, Dr Allen Oliver, and Michael Pluth for assistance. MS thanks the German Research Foundation for a fellowship.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2005). *SMART* (Version 5.059) and *SAINT* (Version 7.07B). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Piers, W. E., MacGillivray, L. R. & Zaworotko, M. (1993). Organometallics, 12, 4723–4725.
- Sadow, A. D. & Tilley, T. D. (2003). J. Am. Chem. Soc. 125, 7971-7977.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thompson, M. E., Baxter, S. E., Bulls, A. R., Burger, B. J., Nolan, M. C., Santarsiero, B. D., Schaefer, W. P. & Bercaw, J. E. (1987). J. Am. Chem. Soc. 109, 203–219.